

DARPAICE 2002 Symposium

Fally Casy

Michael J. Goldblatt

Director mgoldblatt@darpa.mil http://www.darpa.mil

ezneied Sciences Office

Office Thrusts

Biological Sciences

Materials & Devices

Applied and Computational Mathematics

Biological
Warfare Defense

Biology

Bio-Materials

Functional Materials

Smart Materials and Structures

Structural
Materials and
Components

Power and Water

Mathematics

The Argonauts

DSO Alumnus in Space

Future Areas of Emphasis

- Brain Machine Interface
- Logistic Technologies
- Enhancing Human Performance
- Exploiting Complex Systems

DSO Presenters

- Steve Wax Enhancing System Performance
- Joe Bielitzki Enhancing Human Performance
- Doug Cochran Exploiting Complex Systems
- Valerie Browning Material Science
- Eric Eisenstadt Brain Machine Interface

Biology... DARPA's Future Historical Strength

Behavior

Protecting Human Assets

The Bio-Silico Interface

Cell &Tissue Engineering

Genomics & Proteomics

Brain

Technology

Enhanced
Human
Performance

Enhanced
System
Performance

Transduction

Energy

New Materials

Bioinformatics

Biocomputation

Biology Protecting Human Assets

Minutes to Hours

Minutes to Hours

Hours to Days

Bio

Event

Sensors

Genome Sequencing

Consequence Management

- Advanced Diagnostics
- Medical Countermeasures
- Decontamination

Biology: Enhanced Systems Performance

Mechanical systems as autonomous and adaptable as living things

Enhanced System Performance

Develop materials, devices and systems based on understanding and inspiration of biological systems

Bio-optics Synthetic Systems

Bioinspiration for mobility

Enhancing Human Performance

Exoskeleton

BioVision: Tools at the Interface

Neuroprocessing and neurocontrol via high density implantable MEMS devices

Measuring and modeling the dynamic behavior of biological regulatory networks in living cells

MOSAIC

Molecular Observation, Spectroscopy and Imaging using Cantilevers

Develop new instrumentation to do real-time 3D static or dynamic imaging of molecules and nanostructures with atomic level resolution.

Magnetic Resonance Imaging

Scanning Probe Microscopy

Magnetic Resonance Force Microscopy

Bio-Magnetic Interfacing Concepts

Integrate nano-scale magnetics with biology as a powerful novel transduction mechanism for portable robust real-time bio-detection and cellular communication

Ferrofluids

Bio-detection:

Magnetic Carriers (therapeutics/imaging):

High Sensitivity Designs: molecular manipulation:

Bio-Magnetic scanner:

Magnetic Sensors | Magnetic Tweezers

cellular signaling:

PERIODIC TABLE OF THE DESSERTS

Meta-Materials

Design and build new materials with properties not available in nature

Example: Negative index of refraction,n, (m,e <0) observed in microwave transmission through left-handed meta-material!

Novel Processing Capabilities June 2001 Copper on printed circuit board January 2002 machinable, robust, composite

Teflon
Left-handed meta-material

New-to-the-World Structural Materials: Unexpected Strain Rate Response in SAM

Structural Vehicle Explosion Hypervelocity impact

loading rate (MPa m^{1/2} s⁻¹)

Friction Stir Processing

FSP Tool

lmagine.....

Femtosecond LAsers for Material Evaporation

LIDAR

Micromachining

Optical communications

Spectroscopy

Directed energy

Mesoscopic Integrated Conformal Electronics

Piezoelectric Single Crystals for Electromechanical Transduction

Material Available for Device Prototyping

Accelerometer 10-15dB Less Noise

Palm Power

Robots

System Integration

- Fabrication
- Cascading Systems

High T

Low T

Thermal Management

Materials Development

Thermal Conductors...and Insulators

Injection and Motion of Coherent Spins in Semiconductors

- Spin coherence persists for 100's of nanoseconds over 100's of microns
- Largely insensitive to temperature

Sonoluminescence

Bubble Magic: In a flask of acetone bombarded by sound waves, a cloud of bubbles (arrow) swells to the size of a pea before collapsing

The Big Squash: A neutron pulse (arrow) combines with a sound signal (blue) in a flask of acetone to generate the conditions for a bubble (brown) to form, grow, and then implode with great force

DARPAICE 2002 Symposium

Fally Casy